随着预训练的语言模型(PLM)的继续增长,精细调整PLM的硬件和数据要求也会增长。因此,研究人员提出了一种称为\ textit {提示学习}的较轻方法。但是,在调查过程中,我们观察到及时的学习方法是脆弱的,很容易被一些非法构造的提示攻击,从而导致分类错误和PLM的严重安全问题。当前的大多数研究都忽略了基于及时方法的安全问题。因此,在本文中,我们提出了一种恶意提示模板构建方法(\ textbf {stressAttack})来探测PLM的安全性能。研究了几种不友好的模板构建方法,以指导模型错误分类任务。在三个数据集和三个PLM上进行了广泛的实验证明了我们提出的方法提示的有效性。我们还进行实验,以验证我们的方法是否适用于几种镜头。
translated by 谷歌翻译
尽管完全监督的人类骨架序列建模成功,但使用自我监督的预训练进行骨架序列表示学习一直是一个活跃的领域,因为很难在大规模上获取特定于任务的骨骼注释。最近的研究重点是使用对比学习学习视频级别的时间和歧视性信息,但忽略了人类骨骼的层次空间时间。与视频级别的这种表面监督不同,我们提出了一种自我监督的分层预训练方案,该方案纳入了基于层次变压器的骨骼骨骼序列编码器(HI-TRS),以明确捕获空间,短期和长期和长期框架,剪辑和视频级别的时间依赖性分别。为了通过HI-TR评估提出的自我监督预训练方案,我们进行了广泛的实验,涵盖了三个基于骨架的下游任务,包括动作识别,动作检测和运动预测。根据监督和半监督评估协议,我们的方法实现了最新的性能。此外,我们证明了我们的模型在训练阶段中学到的先验知识具有强大的下游任务的转移能力。
translated by 谷歌翻译
组合来自多视图图像的信息对于提高自动化方法的疾病诊断方法的性能和鲁棒性至关重要。但是,由于多视图图像的非对齐特性,跨视图的构建相关性和数据融合在很大程度上仍然是一个开放的问题。在这项研究中,我们提出了输血,这是一种基于变压器的体系结构,可使用卷积层和强大的注意机制合并不同的多视图成像信息。特别是,针对丰富的跨视图上下文建模和语义依赖性挖掘,提出了发散的融合注意(DIFA)模块,以解决从不同图像视图中捕获未对齐数据之间的长期相关性的关键问题。我们进一步提出了多尺度注意(MSA),以收集多尺度特征表示的全局对应关系。我们评估了心脏MRI(M \&MS-2)挑战队列中多疾病,多视图\&多中心右心室分段的输血。输血表明了针对最先进方法的领先绩效,并为多视图成像集成的新观点打开了稳健的医学图像分割。
translated by 谷歌翻译
自上而下的实例分割框架与自下而上的框架相比,它在对象检测方面表现出了优越性。虽然它有效地解决了过度细分,但自上而下的实例分割却遭受了过度处理问题。然而,完整的分割掩模对于生物图像分析至关重要,因为它具有重要的形态特性,例如形状和体积。在本文中,我们提出了一个区域建议纠正(RPR)模块,以解决这个具有挑战性的分割问题。特别是,我们提供了一个渐进式皇家模块,以逐渐将邻居信息引入一系列ROI。 ROI功能被馈入专门的进料网络(FFN)以进行提案框回归。有了其他邻居信息,提出的RPR模块显示了区域建议位置的校正显着改善,因此与最先进的基线方法相比,在三个生物图像数据集上表现出有利的实例分割性能。实验结果表明,所提出的RPR模块在基于锚固的和无锚的自上而下实例分割方法中有效,这表明该方法可以应用于生物学图像的一般自上而下实例分割。代码可用。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
Learning the underlying distribution of molecular graphs and generating high-fidelity samples is a fundamental research problem in drug discovery and material science. However, accurately modeling distribution and rapidly generating novel molecular graphs remain crucial and challenging goals. To accomplish these goals, we propose a novel Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation. Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through stochastic differential equations (SDE) and derive discrete graph structures as the condition for reverse generative processes. We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states. We further utilize ordinary differential equation (ODE) solvers for efficient graph sampling, based on the semi-linear structure of the probability flow ODE. Experiments on diverse datasets validate the effectiveness of our framework. Particularly, the proposed method still generates high-quality molecular graphs in a limited number of steps.
translated by 谷歌翻译
Deep neural networks are vulnerable to adversarial attacks. In this paper, we take the role of investigators who want to trace the attack and identify the source, that is, the particular model which the adversarial examples are generated from. Techniques derived would aid forensic investigation of attack incidents and serve as deterrence to potential attacks. We consider the buyers-seller setting where a machine learning model is to be distributed to various buyers and each buyer receives a slightly different copy with same functionality. A malicious buyer generates adversarial examples from a particular copy $\mathcal{M}_i$ and uses them to attack other copies. From these adversarial examples, the investigator wants to identify the source $\mathcal{M}_i$. To address this problem, we propose a two-stage separate-and-trace framework. The model separation stage generates multiple copies of a model for a same classification task. This process injects unique characteristics into each copy so that adversarial examples generated have distinct and traceable features. We give a parallel structure which embeds a ``tracer'' in each copy, and a noise-sensitive training loss to achieve this goal. The tracing stage takes in adversarial examples and a few candidate models, and identifies the likely source. Based on the unique features induced by the noise-sensitive loss function, we could effectively trace the potential adversarial copy by considering the output logits from each tracer. Empirical results show that it is possible to trace the origin of the adversarial example and the mechanism can be applied to a wide range of architectures and datasets.
translated by 谷歌翻译